Hassan Arbabi, Milan Korda, and Igor Mezić. A data-driven koopman model predictive control framework for nonlinear partial differential equations. In 2018 IEEE Conference on Decision and Control (CDC), volume, 6409–6414. 2018. doi:10.1109/CDC.2018.8619720.


Hassan Arbabi and Igor Mezić. Ergodic Theory, Dynamic Mode Decomposition, and Computation of Spectral Properties of the Koopman Operator. SIAM Journal on Applied Dynamical Systems, 16(4):2096–2126, January 2017. doi:10.1137/17M1125236.


Mikhail Belkin and Partha Niyogi. Laplacian Eigenmaps for Dimensionality Reduction and Data Representation. Neural Computation, 15(6):1373–1396, June 2003. doi:10.1162/089976603321780317.


Yoshua Bengio, Olivier Delalleau, Nicolas Le Roux, Jean-François Paiement, Pascal Vincent, and Marie Ouimet. Learning Eigenfunctions Links Spectral Embedding and Kernel PCA. Neural Computation, 16(10):2197–2219, October 2004. doi:10.1162/0899766041732396.


Tyrus Berry, John Robert Cressman, Z. Gregurić-Ferenček, and Timothy Sauer. Time-Scale Separation from Diffusion-Mapped Delay Coordinates. SIAM Journal on Applied Dynamical Systems, 12(2):618–649, January 2013. doi:10.1137/12088183X.


Tyrus Berry and John Harlim. Nonparametric Uncertainty Quantification for Stochastic Gradient Flows. arXiv:1407.6972 [math], February 2015. URL:


Tyrus Berry and John Harlim. Variable bandwidth diffusion kernels. Applied and Computational Harmonic Analysis, 40(1):68–96, January 2016. doi:10.1016/j.acha.2015.01.001.


Tyrus Berry and Timothy Sauer. Consistent Manifold Representation for Topological Data Analysis. arXiv:1606.02353 [math], February 2019. URL:


Christopher M. Bishop. Pattern recognition and machine learning. Information science and statistics. Springer, 2006. ISBN 978-0-387-31073-2.


Erik Lien Bolager, Iryna Burak, Chinmay Datar, Qing Sun, and Felix Dietrich. Sampling weights of deep neural networks. 2023. doi:10.48550/arXiv.2306.16830.


Steven L. Brunton, Joshua L. Proctor, and J. Nathan Kutz. Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proceedings of the National Academy of Sciences, 113(15):3932–3937, April 2016. doi:10.1073/pnas.1517384113.


Kathleen P. Champion, Steven L. Brunton, and J. Nathan Kutz. Discovery of Nonlinear Multiscale Systems: Sampling Strategies and Embeddings. SIAM Journal on Applied Dynamical Systems, 18(1):312–333, January 2019. doi:10.1137/18M1188227.


Eliodoro Chiavazzo, Charles Gear, Carmeline Dsilva, Neta Rabin, and Ioannis Kevrekidis. Reduced Models in Chemical Kinetics via Nonlinear Data-Mining. Processes, 2(1):112–140, January 2014. doi:10.3390/pr2010112.


Ronald R. Coifman and Stéphane Lafon. Diffusion maps. Applied and Computational Harmonic Analysis, 21(1):5–30, July 2006. doi:10.1016/j.acha.2006.04.006.


Ronald R. Coifman and Stéphane Lafon. Geometric harmonics: A novel tool for multiscale out-of-sample extension of empirical functions. Applied and Computational Harmonic Analysis, 21(1):31–52, July 2006. doi:10.1016/j.acha.2005.07.005.


Matthew J Colbrook and Alex Townsend. Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems. arXiv preprint arXiv:2111.14889, 2021. doi:10.48550/arXiv.2111.14889.


Nicola Demo, Marco Tezzele, and Gianluigi Rozza. PyDMD: Python Dynamic Mode Decomposition. The Journal of Open Source Software, 3(22):530, February 2018. doi:10.21105/joss.00530.


Ethan R. Deyle and George Sugihara. Generalized Theorems for Nonlinear State Space Reconstruction. PLoS ONE, 6(3):e18295, March 2011. doi:10.1371/journal.pone.0018295.


Felix Dietrich, Thomas N. Thiem, and Ioannis G. Kevrekidis. On the Koopman Operator of Algorithms. SIAM Journal on Applied Dynamical Systems, 19(2):860–885, January 2020. doi:10.1137/19M1277059.


Felix Dietrich, Or Yair, Rotem Mulayoff, Ronen Talmon, and Ioannis G. Kevrekidis. Spectral discovery of jointly smooth features for multimodal data. SIAM Journal on Mathematics of Data Science, 4(1):410–430, 2022. doi:10.1137/21M141590X.


D. L. Donoho and C. Grimes. Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data. Proceedings of the National Academy of Sciences, 100(10):5591–5596, May 2003. doi:10.1073/pnas.1031596100.


Carmeline J. Dsilva, Ronen Talmon, Ronald R. Coifman, and Ioannis G. Kevrekidis. Parsimonious representation of nonlinear dynamical systems through manifold learning: A chemotaxis case study. Applied and Computational Harmonic Analysis, 44(3):759–773, May 2018. doi:10.1016/j.acha.2015.06.008.


Nikolaos Evangelou, Felix Dietrich, Eliodoro Chiavazzo, Daniel Lehmberg, Marina Meila, and Ioannis G. Kevrekidis. Double diffusion maps and their latent harmonics for scientific computations in latent space. arXiv:2204.12536 [math], April 2022. URL:


Ángela Fernández, Ana M. González, Julia Díaz, and José R. Dorronsoro. Diffusion Maps for dimensionality reduction and visualization of meteorological data. Neurocomputing, 163:25–37, September 2015. doi:10.1016/j.neucom.2014.08.090.


Ángela Fernández, Neta Rabin, Dalia Fishelov, and José R. Dorronsoro. Auto-adaptative Laplacian Pyramids for High-dimensional Data Analysis. arXiv:1311.6594 [cs, stat], May 2014. URL:


Dimitrios Giannakis. Dynamics-Adapted Cone Kernels. SIAM Journal on Applied Dynamical Systems, 14(2):556–608, January 2015. doi:10.1137/140954544.


Dimitrios Giannakis. Data-driven spectral decomposition and forecasting of ergodic dynamical systems. Applied and Computational Harmonic Analysis, 47(2):338–396, September 2019. doi:10.1016/j.acha.2017.09.001.


Maziar S. Hemati, Matthew O. Williams, and Clarence W. Rowley. Dynamic mode decomposition for large and streaming datasets. Physics of Fluids, 26(11):111701, 2014. doi:10.1063/1.4901016.


Stefan Klus, Feliks Nüske, Sebastian Peitz, Jan-Hendrik Niemann, Cecilia Clementi, and Christof Schütte. Data-driven approximation of the Koopman generator: Model reduction, system identification, and control. Physica D: Nonlinear Phenomena, 406:132416, May 2020. doi:10.1016/j.physd.2020.132416.


Milan Korda and Igor Mezić. Linear predictors for nonlinear dynamical systems: koopman operator meets model predictive control. Automatica, 93:149–160, March 2018. doi:10.1016/j.automatica.2018.03.046.


J. Nathan Kutz, Steven L. Brunton, Bingni W. Brunton, and Joshua L. Proctor. Dynamic mode decomposition. Data-Driven modelling of complex systems. Society for Industrial and Applied Mathematics, 2016. doi:10.1137/1.9781611974508.


Stéphane Lafon. Diffusion Maps and Geometric Harmonics. PhD thesis, Yale University, 2004. URL:


Soledad Le Clainche, José M. Vega, and Julio Soria. Higher order dynamic mode decomposition of noisy experimental data: The flow structure of a zero-net-mass-flux jet. Experimental Thermal and Fluid Science, 88:336–353, November 2017. doi:10.1016/j.expthermflusci.2017.06.011.


Qianxiao Li, Felix Dietrich, Erik M Bollt, and Ioannis G Kevrekidis. Extended dynamic mode decomposition with dictionary learning: a data-driven adaptive spectral decomposition of the koopman operator. Chaos: An Interdisciplinary Journal of Nonlinear Science, 27(10):103111, 2017. doi:


Iva Manojlović, Maria Fonoberova, Ryan Mohr, Aleksandr Andrejčuk, Zlatko Drmač, Yannis Kevrekidis, and Igor Mezić. Applications of Koopman Mode Analysis to Neural Networks. arXiv:2006.11765 [cs, math, stat], June 2020. URL:


Fabian Pedregosa, Gael Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre Passos, and David Cournapeau. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011. URL:


Sebastian Peitz, Samuel E Otto, and Clarence W Rowley. Data-driven model predictive control using interpolated koopman generators. SIAM Journal on Applied Dynamical Systems, 19(3):2162–2193, 2020. doi:10.1137/20M1325678.


Joshua L. Proctor, Steven L. Brunton, and J. Nathan Kutz. Dynamic mode decomposition with control. SIAM Journal on Applied Dynamical Systems, 15(1):142–161, 2016. doi:10.1137/15M1013857.


Neta Rabin and Ronald R. Coifman. Heterogeneous datasets representation and learning using diffusion maps and Laplacian pyramids. In Proceedings of the 2012 SIAM International Conference on Data Mining, 189–199. Society for Industrial and Applied Mathematics, April 2012. doi:10.1137/1.9781611972825.17.


Clarence W. Rowley, Igor Mezić, Shervin Bagheri, Philipp Schlatter, and Dan S. Henningson. Spectral analysis of nonlinear flows. Journal of Fluid Mechanics, 641:115–127, December 2009. doi:10.1017/S0022112009992059.


Peter J. Schmid. Dynamic mode decomposition of numerical and experimental data. Journal of Fluid Mechanics, 656:5–28, August 2010. doi:10.1017/S0022112010001217.


Chao Shen and Hau-Tieng Wu. Scalability and robustness of spectral embedding: landmark diffusion is all you need. arXiv:2001.00801 [math, stat], July 2020. URL:


Floris Takens. Detecting strange attractors in turbulence. In Dynamical Systems and Turbulence, Warwick 1980, volume 898, pages 366–381. Springer Berlin Heidelberg, 1981. doi:10.1007/BFb0091924.


Jonathan H. Tu, Clarence W. Rowley, Dirk M. Luchtenburg, Steven L. Brunton, and J. Nathan Kutz. On Dynamic Mode Decomposition: Theory and Applications. Journal of Computational Dynamics, 1(2):391–421, December 2014. doi:10.3934/jcd.2014.1.391.


Matthew O. Williams, Ioannis G. Kevrekidis, and Clarence W. Rowley. A Data–Driven Approximation of the Koopman Operator: Extending Dynamic Mode Decomposition. Journal of Nonlinear Science, 25(6):1307–1346, December 2015. doi:10.1007/s00332-015-9258-5.


Hao Zhang, Clarence W. Rowley, Eric A. Deem, and Louis N. Cattafesta. Online dynamic mode decomposition for time-varying systems. SIAM Journal on Applied Dynamical Systems, 18(3):1586–1609, 2019. doi:10.1137/18M1192329.